PMATH 450 Notes

April 14, 2021

1 Week 1

1.1 Borel Sets
Goals of 450/650:

1. Develop a theory of integration for functions f : A — R, A C R, which is

(a) More flexible
(b) More rich

(c) Still extends Riemann integration

2. Introduce Harmonic Analysis
General Outline (First Half)

1. Which sets should we integrate over? — Measurable Sets

2. Which functions should we try to integrate? — Measurable Functions

Definition:
Let X be a set. We call A C P(X) a o-algebra of subsets of X if:

LheA

2. Ac A= X\Aec A

3. A, A Ag, e A= U2 A e A
Remark: A C P(x) is a o-algebra.

1. Xed
Proof:
X\0=XecA
2. ABeA=AUBe A

Proof:
AUB=AUBUQUPU.---€ A
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3. A, Ay, e A= N2 A e A

(4= X\ (U(X\AJ)

i=1

4. ABe A= ANBecA
Examples:

1. Smallest o-algebra: {0, X'}
2. Trivial o-algebra: P(x)

3. A={ACR: Aisopen} is not a o-algebra.
Proof:
Let A=(0,1)e A

R\ A= (—00,00U[l,00) ¢ A

4. A={ACR: Aopen or closed} is not a o-algebra.
Proof:

Q=J{gt¢A

qeQ

Proposition:
X is a set, C C P(x), then

A= ﬂ{B : B is a o-algebra,C C B}

is a o-algebra.
It is the smallest o-algebra containing C.
Proof:
Piazza
Definition:
Let C = {A CR: A open}
A=(|{B:CC B,Bis ac-algebra}
is a o-algebra. A is called the Borel o-algebra.
The elements of A are called the Borel sets.
Remark:

1. Open Sets = Borel Sets

2. Closed Sets = Borel Sets

3. {ZEl, T, ... } = Ufil{xz}
Countable Sets are always Borel sets.

In particular, Q is a Borel Set.
4. [a,b) = [a,b] \ {b} = [a,b] N (R \ {b}) is also a Borel set.

By points 3 and 4, we get a lot of Borel sets that are neither open nor closed.



1.2 Outer Measure
Idea
1. Given A C R, how should we “measure” the “size” of A?
2. Some sets have “sizes” which “measure” more nicely than others. Which ones? Borel sets?

Goal
Define a function
m: P(R) — [0,00) U {o0}

(called a measure)
such that

1. m((a,b)) = m([a,b]) = m((a,b]) =b—a
2. m(AU B) <m(A) +m(B)
3. ANB =0, m(AU B) =m(A) +m(B)

Idea
A C R, there exists bounded open intervals I; = (a;,b;) such that A C |J;°, I;
We want:

m(A) < Zm([i)

[e.9]

= ZE(L-) = (b — a:)

=1

Cover A by bounded, open intervals as finely as possible.
Definition:
We define (Lebesgue) outer measure by

m”* : P(R) — [0,00) U {oo}

m*(A) = inf{z 01;): AC U I;, I; are bounded and open interval }
i=1 i=1
Example: ()
For any ¢ > 0, ) C (0,¢)

= m*(0) < £(0,e) =€

Since m*(0) > 0, we have m*(0) =0
Example: A = {z,29,23,...}

€ €
(z; — F,SL’H‘ ﬁ)

3
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Since € > 0 was arbitrary,
m*(A) =0

Also, finite sets also have a measure of 0.
Goal
If I is an interval, then m*(I) = ¢(I).
Proposition: (Keywords: Subset, measure)
If AC B, then m*(A) < m*(B) (Keywords: Monotone)
Why?
Let X ={> 0(1;): ACUL}
We have X D Y
Then, we have inf X = m*(A4) <infY = m*(B).
Lemma
If a,b € R, with a < b, then
m*([a,b]) =b—a
Proof
Let € > 0 be given. Since [a,b] C (a — §,b+ 5), we see that m*([a,b]) < b—a+e.
Since € > 0 was arbitrary,
m*([a,b]) <b—a
Let I;(z € N) be bounded, open intervals such that [a,b] C (J:2, ;.
Since [a, b] is compact, there exists n € N such that

[CL, b] g U IZ
i=1
Therefore,
b—a <Y (L)< U
i=1 i=1
and so

m*([a,b]) >b—a

Thus, m*([a,b]) =b—a

Proposition:

If I is an interval, then m*(I) = ¢(I).
Proof:

1. Suppose [ is bounded with endpoints a < b.
Let € >0

ICla,b)=m"(I)<b—a
€
2
=b—a<m*(I)

[a—i—%,b— |CI=b—a—e<m*(])

2. Suppose [ is unbounded.

¥n € N,3L, = I, C I,0(I,) = n
=m*(I) >m*(I,) =n
= m*(I) =00 =((I)



1.3 Properties

Basic Properties of Outer Measure
Outer measure is

1. Translation Invariant

2. Countably Subadditive

Notation z € R, A C R
r+A={r+a:a€ A}

Proposition [Translation Invariant]
m*(z+ A) =m*(A)
Why?

Proposition: [Countable Subadditivity]

If A, CR(i € N), then m*(J;2, A;) <> o0y m*(4)

Proof

We may assume that each m*(A4;) < oo.

Let € > 0 be given and let’s fix ¢ € N.

There exists open bounded intervals I; ; such that A; C Uf; I; ; and

> ULig) < m (A +
j=1

We see that -
U Az g U I’L J
i=1 ij
and so
m(JA) < 3 uLy)
i=1 @,

ot



Corollary [Finite Subadditivity]

If Ay,..., A, € P(R), then m*(A; U---UA,) <m*(Ay) +---+m*(A,)
Why?

AU---UA, =A4U---UAUDUDU - -

Problem

There exists A, B C R such that AN B = and m*(AU B) < m*(A) + m*(B)
i.e., outer measure is not finitely additive .

Solution:

Restrict the domain of m* to only include sets which measure “nicely”.

2 Week 2

2.1 Measurable Sets

Goal
Restrict the domain of m* to only include sets such that whenever AN B = ()

m*(AU B) =m*(A) +m*(B)

Definition:
We say A C R is measurable if VX C R

m (X)) =m"(XNA) +m*(X\A)

Remark
Always,
m*(X) <m* (X NA) +m"(X\A)
X=XnNnAUX\A
Remark

If A C R is measurable and B C R with AN B = 0, then

m* (AUB) =m"(X NA) +m"(X\A)
=m*(A) +m*(B)

Goal:
Show a lot of sets are measurable.
Prop:
If m*(A) = 0, then A is measurable.
Proof
Let X CR,since XNACA
We have
0<m*"(XNA) <m*"(A) =0

and so m*(X N A) =0.

m" (X NA)+m*(X\A)
=m" (X \ 4)
<m*(X)



Proposition: Ay, A, ..., A, measurable, then U?:l A; is measurable.
Proof

It suffices to prove the result when n = 2. Let A, B C R be measurable.
Let X CR.

Then,

m*(X) m* (X NA)+m*(X\A)
m* (X NA)+m™ (X \ A) N B)+m"(X\ A)\ B)
:m*(XmA)+m*((X\A)mB)+m*(X\(AuB))
m (X NA)U(X\A)NB))+m"(X\(AUB))
m* (X N(AUB))+m"(X\ (AUB))

Proposition: Let Ay, As, ..., A, measurable, A, N A; = 0,7 # j.
Let A=A, U---UA,,.

If X CR, then

(X NA) Zm (X NA)
Proof:
When n = 2,
Let A, B C R be measurable with AN B = (. Let X C R.
Then,

m* (X N(AUB))
=m* (X N(AUB))NA) +m* (X N(AUB))\ A4)
=m" (X NA)+m"(XNB)

Corollary [Finite additivity]
Ay, ..., A, measurable, A; N A; = 0.
Then,

mi (AU UA,) = m*(A)

Proof

2.2 Countable Additivity

Lemma: A; C R means (i € N). If ;N A; =0 for i # j, then A :=J;~, A; is measurable.
Why?

Bn :A1UA2UUAn

XCR
m*(X) =m*(X N B,) +m" (X \ By)
>m*(XNB,)+m*(X\A)

e i (X NA)+m (X )\ A)

i=1

Taking n — oo



m*(X) > im*(X NA)+m*(X\A

>m’ <[OJ(X N AZ)> +m (X \ A)

=m (X NA)+m*(X\A)

Proposition A C R is measurable, then R \ A is measurable.
Why?

XCR

m (X N (R\A)+m*(X\(R\A))
—m (X \ A) +m* (X N A)
=" (X)

Proposition: A; C R measurable (i € N), then A = [J;2, 4; is measurable.
VVhy7 Bl = Al
Bn:An\(AlLJAgUUAn_l),nZ 2

B,=A4,N(R\ (A U---UA,))

Therefore, B, is a measurable set.

For i # j, BiNB; = 1.

Also, U2, Bi = U2, Ai

Corollary

The collection £ of (Lebesgue) measurable sets is a o-algebra of sets in R.
Proposition [Countable Additivity]

A; CRmeansi € Nif A;NA; =0 fori # j.

Then: - -
m*(JA) =) m*(4A)
=1 =1

Why?

Take n — oo.



2.3 Borel Implies Measurable

Goal: Show Borel sets are measurable.
Proposition:
If a € R then (a,c0) is measurable.
Proof:
Let X C R. We want to show that

m*(X N (a,00) + m*(X \ (a,0)) < m*"(X)

Case 1: a ¢ X
We show: m*(X N (a,00)) +m*(X N (—o0,a)) < m*(X).
Let the first outer measure be X7, the second one be Xs.

Let (I;) be a sequence of bounded, open intervals such that X C JI;.

Define I! = I N (a,00) and I/’ = I; N (—o0, a)

Note that
xic|Jnx,cyr
and so
m*(X1) <Y l)
and

m*(Xz) < Z (1)

We then see that
m*(X1) +m*(Xy)

S

By the definition of inf,
m*(X1) + m* (X) < m*(X)

Case 2: a € X

Piazza

Hint: X' = X \ {a}.

Theorem

Every Borel set is measurable.
Why?

(a,00) is measurable.

Mo i(a— +,00) = [a,00) is also measurable.
R\ [a,00) = (—00, a) is measurable.

(a,b) = (a,00) N (—0o0,b) is measurable.

Every open set in R is measurable.

Definition
We call m : L — [0,00) U {o0} given by

Lebesgue measure
Piazza

Prove that A C R is measurable, then = + A is measurable for any z € R.

9



2.4 Basic Properties of Lebesgue Measure

Prop [Excision Property]
A C B, A measurable, m(A) < oo, then m*(B\ A) = m*(B) — m(A).
Why?

m*(B) =m* (BN A)+m*(B\ A)
= m(A) +m*(B\ A).

Theorem [Continuity of Measure]

1. Ay C Ay, C A3 C ... measurable
m <U A,-) = lim m(A,)
i=1

2. By O By D B3 O ... measurable

m(By) < 0o
m ( Bl-) = lim m(B,)
i1 n—o00

Proof:

1. Since m(Ag) < m(|J A;) for all k£ € N, we have

. < .
Jim () < m (U4

If there exists k € N such that m(Ay) = oo, then lim,,_,,, m(A,,) = oo and we are done.
Thus, we may assume that each m(A;) < oo.
For each k € N, let Dy = Ay \ Ap_1, Ag = 0.
Note:

e The D.’s are measurable

e The D,’s are pairwise disjoint
Thus,

10



2. For k € N, define
Dy = B; \ By

Note:

e D;’s measurable
[ J Dlngngg

By (1), m (U D;) = lim,, oo m(D,,).
We see that

Ui =B\ B)

i=1

=B\ (ﬁ&);

lim m(D,,)

n—o0

=m(| J D:)
(0 (1)
=m(By) — m(ﬂ B;).

and so

However,

lim m(D,) = lim m(B;) — m(B,)

n—oo n—o0

=m(By) — lim m(B,)

n—o0

Example:
B; = (i,00), m(( B;) =m(0) =0

lim m(B,,) = oo

3 Week 3

3.1 Non-measurable Set

A non-measurable set.
Goals of the week:

1. Construct an example of a non-measurable set.
2. Construct an element in £\ B.

Lemma

A C R bounded, measurable, A C R bounded, countably infinite.
If A+ A, X\ € A are pairwise disjoint, then m(A) = 0.

Why?

11



U (A + A) bounded, measurable set
A

m(U(A+A)) < 00

m<U(A+A>> => m(A+4)

Hence, m (A) = 0.

Construction

Start with ) # A C R. Consider a ~b < a —b € Q.

Then [Piazza] ~ is an equivalence relation.

Let C'4 denote a single choice of equivalence class representatives for A relative to ~.
Remark

The set A 4+ Cy, A € Q, are pairwise disjoint.

r€M+CyH)N A+ Ch)
=r=MN+ta=X+babeCy
=a—-b=X—-X\ €Q
sa~b=>a=0b
=AM = Ao

Theorem [Vitali]
Every set A C R with m*(A) > 0 contains a non-measurable subset.
Proof:
By Quiz 1, we may assume A is bounded. Say A C [—N, N], for some N € N.
Claim: C'4 is non-measurable.
Assume Cy is measurable.
Let A C Q be bounded infinite.
By the lemma and remark,
m(C’ A) =0

Let a € A. Then, a ~ b for some b € Cy4. In particular,
a—b=XeQ
Moreover, A € [-2N, 2N].
Taking Ag = QN [—2N,2N]. We have that

Ac | (+cw)

AEAQ

A+ C4 has measure 0.
Contradiction.

Corollary

There exists A, B C R such that

12



1. AnNB =0,
2. m*(AU B) <m*(A) +m*(B)

Why?
Let C' be unmeasurable set.

AX CRm"(X)<m" (X NC)+m*(X\C)

Outer measurable is not finitely additive.

3.2 Cantor-Lebesgue Function

Recall: Cantor Set.

I=10,1]

Pl

b B LIE

etc
C=()Ck
k=1
e Uncountable
e Closed
Proposition
The Cantor Set is Borel and has measure 0.
Why?
Closed = Borel -
C=()Cx
k=1
Cy’s measurable, C; D Cy D C3D ...
m(Ch) < oo

By the Continuity of Measure,

Construction: C-L function

1. For k € N, U, = union of open intervals deleted in the process of constructing C, Cs, . ..

Le., Uy = [0,1]\ C,

2. U =2, Uy
ie, U =1[0,1\C

13



3. Say Uy = Iy Ul U - UIpoe_q (in order)

Define:
quk_>[071]
by
7
Qp‘[,“_ﬁ
Example:
1 2 1
U == =2 il
! <3’3>H2
1 2 12 78
= (=,2)u “lu (==
Uy (9’9) <3’3) (9’9)
1 2 3
4 4 4
B 1
2
ete.
. Define
¢ :[0,1] = [0, 1]

by: For 0 # z € C, p(z) = sup{p(t) : t e U N[0, 2)}. and p(0) = 0.
This is the Cantor-Lebesgue function.

Things to know about ¢:

(a) ¢ is increasing. [Piazzal
(b) ¢ is continuous.

e ¢ is continuous on U.
e zc(C,x#0,1
For large k, there exists ay € Iy, by € Iy i+1 such that

ap < x < b
But,
i+1 i 1
o(bi) — plar) = ot ok —or 0
No jump!
e v c{0,1}

(¢) ¢ :U —[0,1] is differentiable and ¢’ =0

(d) ¢ is onto.
p(0) =0,¢(1) =1
By IVT

14



3.3 Non-Borel Sets
Let ¢ be the C-L function, Consider ¢ : [0, 1] — [0, 2] defined by
(r) =z + o(z)
1. 7 is strictly increasing.
2. 1) is continuous.

3. 1 is onto.

= 1 is invertible
Properties

1. ¥(C) is measurable and has positive measure.
2. 1) maps a particular (measurable) subset of C' to a non-measurable set.
Proof:
1. By A1, ¢! is continuous.
- (0) = () 7H(C) s closed.

= 1(C) is measurable.

Note that
0,1]=Ccul

= [0,2] = (C)Up(WU)
= 2 = m(C)) + m(p(U))

It suffices to show that
myU)) =1

Say U = | |2, I;, where the I;’s are disjoint open intervals.

Then,
) = | o)

mU)) = 3 m(u(l))
Note that Vi € N, 3r € R, such that ¢(z) =r for all z € I,.

In particular, ¢ (z) = = + r for all z € I; and so

V() =r+1I;

som (YU)) = 2om(l;) = m (1) = mU)
Since [0, 1] = U U C, we have that

1=m(U) +m(C) =m(U)

Hence,
m(pU)) =mU)=1>0

15



2. By Vitali, ¢(C) contains a subset A C ¢(C') which is non-measurable.
Let B=1¢"1(A) C C.
then, ¢ (B) = A is non-measurable as required.

Theorem

The Cantor set contains an element of £\ B
Why?

B C C' = B measurable
1 (B) non-measurable

By assignment 1, if B is Borel, then ¢(B) is Borel.
Therefore, B is NOT Borel.

4 Week 4

4.1 Measurable Functions

Question: Which functions are suitable for integration?
Definition:
For A C R measurable, we say f : A — R is measurable iff for all open &4 C R, f~1(U) is measurable.
Proposition:
If A C R is measurable and f : A — R is continuous, then f is measurable.
Why?
U C R is open f~!(U) open = measurable.
Proposition: (Characteristic Function)
A C R measurable

1 z€ A

‘R— R =
XA 7XA($) {O ng

Then x4 is measurable.
Why?
U C R open

Xa U) =R, AR\ A0
Proposition: A C R measurable, f : A — R, the following are equivalent:
1. f is measurable
2. Va € R, f7'(a,00) is measurable
3. VYa < b, f~'(a,b) is measurable.

Proof

(1) = (2) is trivial.

(2) = (3)

Let b € R so that f~!(b,00) is measurable. Then,

R\ f7H(b,00) = [TH(R (b,00))

= [ (=00, b))
is measurable as well.
We see that
> 1
(—00,b) = | J(—00,b— E]
n=1



and so

4 (=o00,b) = | £ (—00,b—

n

Each of the preimage (—o0,b — %] is measurable.
Finally, for a < b.

(a,b) = (a,00) N (=00, b)

=f"(a,b)
= f_l(au OO) N f_l(—OO, b)
is measurable.

(3) = (1) is trivial.

4.2 Properties

Properties of measurable functions
Proposition:
A C R measurable, f,g: A — R measurable.

1. For all a,b € R
af + bg

is measurable.

2. The function fg is measurable.
Proof
1. Let a € R. For a € R,

(af) Ha,00) ={z € A:af(z) > a}

(a) a>0
(f) Mo 00) = {r € A fa) > 7}
- (3
— measurable
(b) a<0

(af) ™ (.00) = £ (=00, %)

— measurable

(¢) a=0 af continuous = measurable.

17



We now show that f + ¢ is measurable.

For a € R,

(f +9) ' (a,00)
={r e A: f(z)+g(x) > a}
={z € A: f(z)>a—g()}
={r€A:JeqQ flx) >q>a—qgx)}

=lJ{zeA: fl@)>q}n{zecAd:gx)>a—q})

q€Q

=J (f (a,00) N g™ (a = ¢,0))

qeQ
is measurable.
Hence, f + ¢ is measurable.

2. By the quiz, |f| is measurable.
For a € R,

(f*) (e, 00)
={z € A: f(x)* > a}

_{A a<0
{zeA:fl@)>va} a>=0

_ A a<0
fI7 (Ve,00) >0

is measurable.
Thus, f? is measurable.

Since

(f+9° = +2fg+7¢

is measurable, we have that 2fg is measurable.

By part (1), fg is measurable.
Exercise
Y :[0,1] = R, ¢(x) = x + ¢(x)(Cantor-Lebesgue function)
JA C [0, 1] such that A is measurable but 1(A) is not measurable.
Extend 1 : R — R continuously to a strictly increasing surjective function such that ¢~! is continuous.
[Piazza: How?|
Consider x4 o9~ !
Then,

(xao %0_1)71 (%7 ;)

(i ()

=1 (A) NOT measurable

Therefore, y4 o1 ~! is not measurable.

18



Proposition:

A C R measurable.

If g: A — R is measurable and f : R — R is continuous, then f o g is measurable.
Why?

U C R open

is measurable.

4.3 More Properties

Define
ACR
We say a property P(z),z € A is true almost everywhere (ae) if

m({x € A: P(x) false}) =0

Proposition

f A — R measurable.

If g: A— Ris a function and f = g almost everywhere, then g is measurable.
Why?

B={veA: f(x)#g(z)}
m(B) =0

Let o € R.

g Ha,00)={r € A:g(x) > a}
={re A\ B:g(z) >a}lU{r e B:g(z) > a}
={z € A\B: f(z)>a}tU{zr € B:g(z) > a}
= (fYa,00)NA\ B)U{z € B:g(z) > a}

is measurable.
Proposition:
A measurable, B C A measurable.
A function f: A — R is measurable iff f|p and f|4\p are measurable.
Proof:
e Forward direction:
Suppose [ : A — R is measurable. Let @ € R. Then,
(flz)~" (a,00) = {z € B|f(x) > a}
= f ' (a,0)NB

is measurable.
Therefore, f|p is measurable.

The proof for f|a\p is identical.

19



e Reverse direction:

Suppsoe f|p and f|a\p are measurable. For a € R are measurable. For o € R,

T (a,00)={zcA: f(z)>a}
={zxeB: f(r)>alU{zre A\B: f(z) > a}

= (flp)"' (a,00) U (f|A\B)71 (o, 00)

is measurable and so f is a measurable function.

Proposition

(fn) measurable, A — R.

If f, — f pointwise almost everywhere, then f is measurable.
Proof:

Let B={x € A: f.(x) A f(z)}.
So that m(B) = 0.
For a € R,

(flp) " (a,00) = [ (@, 00) N B

is measurable.
A function whose domain has measure 0 is measurable.
It suffices to show that f|a\p is measurable.
By replacing f by f|a\s, we may assume f, — f pointwise.
Let o € R. Since f,, — f pointwise, we see that for x € A:

fl@) >a
1
<dn, N € N\Vi > N, fi(x) > a+ﬁ

We then see that
f7H (o, 0)

“JUN s (o)

neENneNi=N

is measurable.
Therefore, f is measurable.

4.4 Simple Approximation

Definition:
A function ¢ : A — R is called simple if

1. ¢ is measurable.
2. ¢(A) is finite.

Remark [Canonical Representation]
¢ : A — Rsimple. o(A) ={c1,co,...,c,} distinct
A; = 71 ({¢;}) measurable.

e A= |_|§=1 A;.

20



¢ 0= cixa

Goal:

Show measurable functions can be approximated by simple functions.
Lemma: f: A — R measurable and bounded.

For all € > 0, there exists simple ¢, 1. : A — R such that

L pe < f <t and
2.0< Y. —pe <e.

Why?
f(A) Cla,b],e>0

a=yYy <y <y <---<y,=>b

Yir1 — Y <€

I = [yr—1,yr), Ax = [~ (1)

A, is measurable.
e : A—=R . : A—R.

n

Pe = Z Yk—1X A

k=1

Ve = ZkaAk
k=1

The two functions are both simple.
Let z € A. Since f(x) € [a,b], there exists k € {1,...,n} such that f(x) € Ij.
Le, ypo1 < f(z) < yg, © € Ag.
Moreover,

() = yp—1 < f(2) < Y = Pe()

and so:
e < f < e

For the same =,

0 S ¢€($) - cpe(x) =Yk — Yp—1 < €.

Theorem [Simple Approximation]
A C R measurable.
A function f: A — R is measurable iff there is a sequence (g,) of simple functions on A such that

1. ¢, = f pointwise.
2. Vn, |en| < |f|

Proof:

e Backwards direction: Done.
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e Forward direction:

Suppose f: A — R is measurable.

1. f>0:
For each n € N, define:
A, ={ze€A: f(z) <n}
so that A,, is measurable and f|4, is measurable and bounded.
By the lemma, there exists simple functions (¢,), (1,) such that

0<¢p < f<

on A, and )
ngn_¢n<_
n

Fix n € N.
Extend ¢, : A — R by setting p,(x) =nif x ¢ A,.
Therefore, 0 < ¢, < f.
For each n € N,
on:A—=R
is simple.
Claim: ¢,, — f pointwise.
Let z € A and let N € N such that f(z) < N (ie., z € A4,).
Forn > N, xz € A, and so
1
0< f(x) - Qpn<x) < %(95) - @n(x) < E

2. f: A— R is measurable.

Welet B={zx € A: f(z) >0},C={x € A: f(xr) <0} be measurable.

We define g,h : A — R:

g=xsf,h=—xcf

so that g, h are measurable and non-negative.

By Case 1, there exists sequences (¢,,), (¢,) of simple functions such that ¢, — ¢ pointwise,

¥, — h pointwise, 0 < ¢, < ¢,0 <, < h.

Then,

On—Un—>g—h=f
pointwise.

and

|on = Un| < |@n] + |0
<g+h=|fl
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5 Week 5

5.1 Littlewood 1

Littlewood’s Principles
Up to certain finiteness conditions:

1. Measurable sets are “almost” finite, disjoint union of bounded open intervals.
2. Measurable functions are “almost” continuous.
3. Pointwise limit of measurable functions are “almost” uniform limits.

Theorem [Littlewood 1]
A measurable with finite measure, m(A) < oco.
For all € > 0, there exists finitely many open bounded, disjoint intervals I, I, ..., I,, such that:

m (AAU) < e,

where = LU L U---UI,.
Note: m (AAU) =m (A\U)+m U\ A)
Proof
Let € > 0 be given.
We may find an open set U such that A C U and

m U\ A) <le/2

By PMATH 351, there exists bounded, open, disjoint intervals I;(i € N) such that:

i=1
Note that:

ZE(L-) = m(U) < oo

That tells us that this series converges.
In particular, there exists N € N such that:

Take V=1 U---Uly.

We see that,
m(A\V)<mU\V)
N+1
= €
— 'Z (1) < 3
i=N+1
And:

Therefore, m (AAV) < e
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5.2 Littlewood 3

Goal: Prove that pointwise limits of measurable functions are almost uniform limits.
Lemma
A measurable, m(A) < oo, (f,) measurable, A — R.
Assume f : A — R such that f,, — f pointwise.
For all o, 8 > 0, there exists a measurable subset B C A and N € N such that

L. |fu(z) — f(2)] < a for all z € B,n > N.
2. m(A\ B) <.

Proof:
Let a, > 0 be given.
For n € N, define

A, ={zr e A:|fe(z) — f(z)] < aforal k >n}

= () Ife = 7" (=00, )
k=n

Measurable.
Therefore, every A,, is measurable.
Since f, — f pointwise,

A= G A,
n=1

Since (A,,) is ascending, by the continuity of measure:

m(A) = lim m(A,) < oo.

n—o0

We may find N € N such that for all n > N,
m(A) —m(A,) < B.

Pick B = Ay.

Theorem [Littlewood 3, Egoroff’s Theorem]

A measurable, m*(A) = m(A) < oo. (f,) measurable, A — R, f, — f pointwise.
For all € > 0, there exists a closed set C C A such that:

1. f, — f uniform on C.
2. m(A\C) <e

Proof
Let € > 0 be given.
By the lemma, for every n € N, there exists a measurable set A,, C A and N(n) € N such that:

1. Forall z € A, and x > N(n),
1
) — £la)| <+

2. m(A\ A,) < [Stuff
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Take B = (., A, (measurable).
For n € N such that £ < ¢, k> N(n), and z € B

i) = f@)] < - < e

Therefore, f, — f uniformly on B.
Moreover,

m(A\ B) = (A\ﬂA)
=m (J\4,)
<> m A\A
<X ga3

By Al, there exists a closed set C' such that C' C B and m (B \ C) <

N

1. Since C' C B, f; — f uniformly on C
m(A\C)=m(A\B)+m(B\C)<§+5=c¢

Example: Warning

fa iR =R, folz) = Z. fn — 0 pointwise.

[Piazza]

fn # 0 uniformly on any measurable set B C R such that m (R\ B) < 1.
Need: m(A) < oo.

5.3 Littlewood 2

Goal: Prove that measurable functions are “almost” continuous.
i.e. Littlewood’s 2nd Principle / Lusin’s Theorem
Lemma

f:A— R simple

For all € > 0, there exists a continuous g : R — R and a closed C' C A such that
1. f=gonC.

2. m(A\C) <e.

Why?

f=>""a;xa,: Canonical Representation.

A; ={x € A: f(x) = a;} measurable
Al = C; C A, closed such that:
m(Ai\ C;) <

A=, A, C =], C; closed.

1. For all x € C;, f(x) = a;.
Al = f is continuous on C.
A1l = We then extend f|c to a continuous function g : R — R.

2. m(A\C) =m (U, (4\C)) =31, m(AN\C) <e

Theorem [Littlewood 2, Lusin’s Theorem]
f A — R measurable.
For all € > 0, there exists a continuous g : R — R and a closed set C' C A such that:
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1. f=g¢gon C and
2. m(A\C) <e.

Proof

Let € > 0 be given.

Case 1: m(A) < oo.

Let f: A — R be measurable.

By the Simple Approximation Theorem, there exists (f,) simple such that f, — f pointwise.
By the Lemma, there exists continuous function g, : R — R and closed sets C;,, C A such that

1. f, — g, on C, and

2. m(A\C,) <

By Egoroff, there exists a closed set Cy C A such that f,, — f uniformly on Cy and m (A \ Cp) < .
Let C' = ﬂ?il Cz

1. g, = fn — f uniformly on C' C ()
Therefore, f is continuous on C'.

Al: We may extend f|c to a continuous function g : R — R.

m(A\o):m<A\ﬁci)
m(U(A\Co)>

=0

<) m(A\NG)

I

Il
=)

:m(A\Oo)Jer(A\Ci)

< +§:E

Case 2: m (A) = 0.
For n € N,
A,:={a€A:lal €n—1,n)}

so that A= [7, A,.
By Case 1, there exists continuous functions g, : R — R and closed C,, C A,, such that

1. f=g,0nC,

2.m(An\Cn)<

Consider C' = | |7, C,,.
[Piazza] C' is closed.

1.
m(A\C)=m (L] (4n\ Cw)
= Zm(An\Cn)

<€
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2. g:C—R:
Let z € C so that x € (), for exactly one n € N.

Define g(z) = g.(z) = f().
[Piazza] Then, g is continuous.

Al = Extend g continuously to all of R.

6 Week 6

6.1 Integration 1

1. Simple functions:
p: A= R m(A) < oo

2. f: A— R bounded measurable
m(A) < 00,0 < f <t

3. f: A— R measurable, f > 0.
sup{/h:he(Q),Ogth}
A

£+ = max {f.0}
§~ = max {—f,0}

4. f: A — R measurable:

Step 1: ¢ : A — R simple, m(A4) < oc.
Definition: m(A) < oo, ¢ : A — R simple.
Carnonical Representation:
¥ = Z a; X A;
i=1

The (Lebesgue) integral of ¢ over A is:

[ o= iaimm»

Lemma m(A) < oo (A measurable).
If By, Bs,...,B, C A are measurable and disjoint, and ¢ : A — R is defined by

Y = Z biXBi
=1

then §
/ o= bm(B;)
A i=1
Why?
Forn=2:

If by # by, then ¢ = byxp, + bax B, is the canonical representation.
If b1 = bQ, then

bixs, +bix, = b1 (XB, + XB,)

== leBlLJBQ
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Thus,

/QO == blm (Bl UBQ)
A

= by (m(B1) + m(By))
= blm(Bl) + bgm(BQ)

Proposition: ¢,1 : A — R simple, m(A) < co.

For all @, 3 € R.
Jtavssv=aforsfv

Why?
Let
©(A) = {ar,az,...,a,}
lp(A) == {bl, bg, .. ,bm}
distinct.
Cy={z € A:p(x) = a, d(x) = b}
=o' ({a:}) N7 ({b;})
measurable.

ap + G = Z (aa; + Bb;) xcy

C;; are pairwise disjoint.
By the lemma,

/Aw + B0 =Y (aa; + b)) m (Cy)
= Zaaim (Cyj) + Zﬁbjm (Cij)
- Zaai (Zm(Cij)) + Zﬁbj (Zm(@j))
- Zaai (m({z € A:p(x) = a;}))
+ Zﬁbj (m ({z € A:9¢(z) = b;}))

Za/w+5/w
A A
Proposition:

¢, : A — R simple, m(A) < co.
If ¢ <), then

[e<[v

Why?
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RN

—[w-9=0

6.2 Integration 2

Step 2:

f A — R bounded, measurable functions.
m(A) < oo

Recall:

For all € > 0, the exist simple ¢, < f < 1) such that ¢ — ¢, < €.
Definition:

f: A — R bounded measurable, m(A) < oo.

Lower Lebesgue Integral:
/f:sup{/gochgfsimple}
JA A

Z}=nﬁ{éw:fswamm%

Proposition: m(A) < oo, f : A — R bounded measurable.

Upper Lebesgue Integral:

Then: _
[r=[+
JA A
Proof:
For all n € N, there exists simple functions:
On, Ut A= R
such that:
Lopn < f <t
We see that,
0< / f- / S
A JA
A A
- [wn—s0
A
1 1
< / Lo L) 5o
ANl n
Definition:

m(A) < oo, f: A — R bounded measurable.
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We define the (Lebesgue) integral of f over A by:

/Af::AJEZf

Proposition: f,g: A — R bounded measurable, m(A) < oc.

/ (af + o) —a/f+ﬁ/

Proof:
[Piazza] Scalar multiplication.

©1, P2, P1, Y all simple.

o1 < f <P, 090 < g <y

/f+g—/f+g

< [ @it

=/Aw1+/Aw2

Af+g
Sinf{/Aler/A%ifS%’gS%}
:inf{/Awl <y simple} —i—inf{/AwQ:g < 1y simple}
=Af+Ag

‘Af+g—l;+g
2A%+@
:/ASONL/ASDQ

Af+gZAf+Ag

Proposition: f,g: A — R bounded measurable, m(A) < oc.
If f <g, then:
/fﬁ/g
A A

30
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- /=0

[o=n=[w-nz[o=0
:/ /f>()

6.3 BCT

Bounded Convergence Theorem
Proposition: f : A — R bounded measurable, B C A measurable, m(A) < cc.

Then
/B f= /A fxs

Proof

1. f=xc, C C A measurable.

2. fissimple, f =" aixa,.
Thus,

3. f: A— R be bounded, measurable functions.

AfXB§A¢XB:[B¢

By taking the inf over all such v, we have that

/AfxBSZfz/Bf

Taking ¢ < f, ¢ is simple, we obtain:

LfZ/BfS/AfXB

31
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Proposition: f : A — R bounded, measurable, m(A) < co.
If B,C' C A are measurable and disjoint, then:

Juc? =707

Why?

/BUCfZ/AfXBUC

Z/Af(XB-FXc)

://foB+AfXC
A

Proposition: f : A — R bounded, measurable, m(A4) < co.

Then
ﬂ [

=< <If]

/m</f</m

Proposition: (f,,) bounded, measurable, A — R, m(A) <
If f, — f uniform, then lim,, f 4 S = f N

Proof.

Let € > 0 be given.

Let N € N such that

Why?

[fn = fI < m(/i)+1

For n > N. Then, for n > N,

€
<
m(A) +1 ‘
Exercise:
fn:[0,1] = R,
0 0<z<i
fa@)=qn L<z<?2
0 xz%

fn — 0 pointwise.
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Theorem [BCT]
(fn) measurable, A — R m(A) < oo.
If there exists M > 0, such that |f,| < M for all n, and f,, — f pointwise, then:

lim [ f, = / f
Proof:

Let € > 0 be given. By Egoroff’s Theorem, there exists measurable B C A and N € N such that for
n>N:

o

2. m(A\ B) <| 337

Forn > N,

/Afn—/Af]s/Am—ﬂ
:/B|fn—f|+/A\B\fn—f|

S/B\fn—f|+[4\3(\fn!+|f!)
S/Ifn—f|+2Mm(A\B)
B

<6+€
— — =€
2 2

6.4 Integration 3

f:A—=R, f >0 measurable.
Definition:
f A — R measurable.

1. We say f has finite support if
Ag:={x € A: f(z) # 0}

has finite measure.

2. We say f is a BF function if f is bounded and has finite support.

[r=1,

3. If f: A— Ris BF, then

Definition:
f A — R measurable, f > 0.

/Af::sup{/AhzoghngF}

Proposition: f,g: A — R measurable, f,g > 0.
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1. Va, 8 € R:
[svpn=af s
2. Iffgg,theanfoAg.

3. If B,C C A are measurable and BN C = (), then

Jue? = J7 0

Proposition: [Chebychev’s Inequality]
If f: A — R measurable, non-negative.
For all e > 0,
1
m({xEA:f(x)ze})g—/f
€Ja
Proof
Let € > 0 be given and let
A ={red:f@@)>e)

1. m(A,) <e.
p=-exa < f

em(Ae)z/Awﬁ/Af

A BF function

2. m(A,) = oc.
ForneN, A, :== AN [—n,n].

By the continuity of measurable,

oo =m(A:) = lim m(Ac).

n—oo

For n € N, ¢, := exa,., (BF).
We see that ¢, < f.

Therefore,

oo = m(A,)
= lim m(A.,)

n—oo
1

= lim - [ ¢,
n—oo € A

<[
A
Proposition:

f: A — R measurable and nonnegative (f >0). [, f = 0iff f =0 almost everywhere.
Proof:
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(=) suppose [, f =
m({z € A: f(r) #0})

Szm({weAif@)Z%})
(%I)Z”/Afzo

(<) Suppose B = {x € A: f(x) # 0} has measure 0.

IREVRAT
:/Bf
—0  [Piazza]

6.5 Fatou and MCT

Theorem [Fatou’s Lemma]
(fn) measurable, non-negative, A — R.

If f, — f pointwise, then
/fgliminf/fn
A A
Proof

Let 0 < h < f be a BF function. Say Aqg = {z € A: h(x) # 0}.

It suffices to show
/ h < liminf/ fn
A A

hn, = min{h, f,} (measurable)

Since h is BF, m(Ap) < oo
For each n € N, let
Note:
1. 0< h, <h< M, for some M > 0, for all n € N.
2. For x € Ag and n € N,
(a) h,(z) =h(z) OR
(b) ha(2) = fu() < A(x) and

Thus, h,, — h pointwise on Aj.

By the BCT,



Since h,, < f, on A,
/ h=lim [ h,
A n—oo A
= lim inf / hy,
n—o0 A
< lim inf / fn
n—oo A

Exercise:

A=(0,1]
Jn = ' X(0,2)

/O:O
A

1
/Afn —nm((),ﬁ) =1

lim inf / fa=1
A
Theorem [MCT]

(fn) non-negative, measurable function A — R.
If (f,) is increasing and f,, — f pointwise, then

i [ = [ 1

fn — 0 pointwise.

Why?
FL
/f gliminf/fn
A A
< lim sup / fn
A
s/f
A
Remark:

1. If p: A — R is simple and m(A) < oo, then

/¢<oo
A

2. If f: A— R is bounded, measurable and m(A) < oo, then:
/ f<oo
Definition:

If f: A— R is measurable and f > 0, then we say f is integrable iff fA f < oo.
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7 Week 7

7.1 Integration 4

The general integral
Definition:
f A — R measurable,

f1(x) = max {f(z),0}
[ (z) = max{—f(x),0}
Note:
L f+f =1/
2. f=f =17
3. f*, f~ measurable.

Proposition

f: A — R measurable, then f, f~ are integrable iff |f| is integrable.
Why?

(=)

[fl=F"+7

Ju= [ s+ [ £ <o
/Af+s/A|f|<oo

/ < / |f] < o0
A A
Definition:

[+ A — R measurable. We say f is integrable iff | f| is integrable iff f*, f~ are integrable, and define:

Jr= /f‘

(f=fr—f

(<)

Proposition: [Comparison Test]

f A — R measurable, g : A — R non-negative integrable.
If |f| < g, then f is integrable and |fAf‘ < [, 11

Why?

L[ IfI <[, f <o
f is integrable.

[e=1fe- [
S/f++/f‘
~ [urr= [
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Proposition:
fyg: A — R integrable.

1. Vo, B € R, af 4+ (g is integrable and

/Aaf+6g=a/Af+ﬁ/Ag
2. Iffgg,theanfngg.

3. If B,C C A are measurable with BN C = (), then

Jue? =7 0

Why?

1. Comparison Test

2. These results hold for f*, f~, g%, 9.

Theorem [Lebesgue Dominated Convergence Theorem]|
(fn) measurable, A — R, f, — f pointwise.
If there exists an integrable g : A — R such that |f,| < g for all n € N, then f is integrable and
limn_)oofAfn = fAf.
Proof:
Since |f,| < g — |f] pointwise and so
f1<g

By comparison, f is integrable.
Next, observe that g — f > 0.
By Fatou’s Lemma:

1.
/Ag—/Afzng—f
Sliminf/Ag—fn
ZAg—limSUPAfn
e [ 1< [ 5
2.

/Ag+/Af=/Ag+f

< liminf/ g+ fn
A

:/g+liminf/fn
A A

:>/f§liminf/fn
A A
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We see that

/Aleiminf/Afn

= lim sup / fn
A

= lim [ f,
n—oo A

7.2 Riemann Integration

Definition:
f i [a,b] — R bounded.

1. A partition of [a,b] is a finite set:

such that,
a=20<T1<Tp<---<x,=>0

2. Relative to P, we define the lower Darboux sum:

L(f,P)= Zmz(xl — 1)

where
m; =inf {f(x): 2z € [r;_1, 2]}

3. Similarly, the upper Darboux sum is defined by:
U(f,P) =Y M(x; — ;1)
i=1

where
M; = sup{f(2) : @ € [2;1, 2}

Definition:
f i [a,b] — R bounded.

1. Lower Riemann Integral:

b
R/ f=sup{L(f,P): P partition}

2. Upper Riemann Integral:

b
R/ f=inf{U(f, P): P partition}

3. We say f is Riemann Integrable iff
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Definition:
Let Iy,..., I, be pairwise disjoint intervals such that:

n

[avb] = UIZ

=1

A step function is a function of the form:

F=> ax,
i=1

for some q; € R.
Remark:

f i la,b] — R bounded.
a=ro<r1 < - <x,=0>

Ii = [Z'Z‘,l,l’i), 1= 1,2,...,71—1
In - [xn—hxn]

Then,

on I;, (p < f) and

on I;, (f < ).

Remark:
f i [a,b] — R bounded.

b
R[ f=sup{L(f.P): P}

b
:sup{R/ go:goﬁfstep}

Rff - [wi.p):p)

b
inf{R/wsz@Zzstep}
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7.3 Riemann vs Lebesgue

Goal: Compare Lebesgue and Riemann Integration for bounded functions f : [a,b] — R.
Definition: f : [a,b] — R bounded. Let x € [a,b] and § > 0.

1.

ms(x)

=inf{f(z) :z € (xr -6, +9)NJa,b]}

M(;(x)
=sup{f(z) :z € (x—d,z+3J)NJa, b}

3. Lower boundary of f:
m(x) = (151_1{(1) ms(x)
4. Upper boundary of f:

M(zx) = %i_r}ré M;(z)

5. Oscillation of f:

Remark:
f i [a,b] — R bounded
The followings are equivalent:

1. f is continuous at x € [a, D]
2. M(z)=m(x)
3. w(z) =0.

Lemma:

f i [a,b] — R bounded.

1. m is measurable.

2. If ¢ : [a,b] — R is a step function with ¢ < f, then ¢(x) < m(x) for all points of continuity of ¢.

b
R / f= m
Ja [avb]

3.

Proof: Appendix
Lemma: f : [a,b] — R bounded.

1. M is measurable.

2. If ¢ : [a,b] — R is a step function with f <), then M (z) < ¢(x) at all points of continuity of .

b
R[7=[ u
a [a,b]
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Theorem [Lebesgue]
Let f : [a,b] = R be bounded. Then f is Riemann integrable iff f is continuous almost everywhere.

In that case,
b
R[i=] 1
a [a,b]

Why?

We see that f is Riemann integrable if and only if

/ m:/ M & (M —m)=0
0.t 0,8 fa.t]

< M = m almost everywhere
& w = 0 almost everywhere
& f is continuous almost everywhere

If f is continuous almost everywhere: = f is measurable and

b
R / f= m
Ja [avb}

< f
[a,0]
< M
[a,b]
b
—R[ f
b
=R [ f= f
a [a,b]
Exercise: f:[0,1] — R:
1 z€Q
flz) =
0 z¢Q

f is discontinuous on [0, 1] = f is NOT Riemann integrable.
But f = 0 almost everywhere and so
/ ;= / 0=0
(0,1] [0,1]

Qﬂ[(),l]:{ql,qg,}

Exercise:

42



Jn= X{q1,q2,-,an}

fn — f pointwise.
(fn) increasing. f,, <1 is Riemann integrable.

R ]fn7L>R f

[0,1 [0,1]

We do not have MCT, RDCT.

8 Week 8

8.1 LP Spaces

Goal:
Create Banach Spaces whose norm is given by Lebesgue Integration.
Recall:

1. For 1 <p<

(C (la, 0]) 1~ 1lp)
is a normed vector space, where
b
sty = [ 1ov
2. For p = o0,
(C(la, b)), [ - Is0)

[flloe = sup {|f(z)| : x € [a, b]}

is a Banach space. (A complete normed vector space)

Problem: A C R be measurable, 1 < p < oo.

11, = ( f 1rv) "

is not a norm on the vector space of integrable functions f: A - R
Why?

/ |f|P =0« f =0 almost everywhere
A

Definition / Notation
A C R measurable.

1. M(A) ={f: A — R measurable} is a vector space.

f ~giff f= g almost everywhere

[f] equivalence class

2. M(A)/ ~=A{[f]: f e M(A)}
alf]+ Blg] = laf + Byl

is a vector space.
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Remark [Piazza]:

If f ~ g and f is integrable, then g is integrable and [, f = [, g
Definition:

A C R measurable, 1 < p < oo.

v = {1l e M)/ ~ [ 177 < 0]

Remark
Suppose [f], [g] € LP(A). Then,

e [ o < o

f+gl” < (IF1+ 1g])”
(2max{|f],[g]})"
22 (117 + 1917)

= |f + g|? integrable by comparison.
2. LP(A) is a subspace of M(A)/ ~.

Definition:
A C R measurable.

L>=(A) ={[f] € M(A)/ ~: f bounded almost everywhere}

Remark:
L [f1;lg) € L=(A)
If| < M off BC A,m(B) =0
gl < Nofft CCAm(C)=0
For z ¢ BUC, (B U C has measure 0),

[f (@) + g(2)] < [f(2)] +[g(z)| < M + N

2. L>(A) is a subspace of M(A)/ ~.

Proposition: A C R be measurable.
Then,
I[fllc =inf{M >0:|f] < M almost everywhere}

is a norm on L>®(A).

Remark:
For all n € N,
1
< il
A< 0l +
off m(4,) = 0.
B = U A,, — measure 0

n=1

|1 < [lloo off B
Why?
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L [[fllee = 0= 1f] < |lIf]lloc almost everywhere.
= | f| = 0 almost everywhere.
= f = 0 almost everywhere.
[f] = 10] in L>(A).
2. [f < llf]lloo off B.
9] < [l[g]llos off C
Both B and C' have measure 0.
Off BUC — measure 0:

|f+gl <[f]+ 9]
< Moo + 9]l

By the definition of inf,

1L+ glllee = [Ilf] + [9]lloo
< oo + Mol
8.2 [P Norm
Goal
Show that

=/ |f\”)1/p

is a norm on LP(A), for 1 < p < oc.
Example: p = 1:
A C R measurable, [f],[g] € L'(A)
[f+al <1fl+1gl

$/V+m</m+/M|

= [ILf +gllls < WA+ [lgll

Remember:

f=gin LP(A) means f = g almost everywhere.

Definition:

For p € (1,00), we define ¢ = % to be the Holder conjugate of p.
Note:

l.g="2 op=-L

-1 q—1

K
3

2. =1

D=
_I_
Q=

Definition:

We define 1 and oo to be Holder conjugates.
Proposition: [Young’s Inequality]

p,q € (1,00) be Holder conjugate:

For all a,b > 0,

Why?

45



p
flx)=a""1 -1
1

Taking:

Proposition: [Holder’s Inequality]
A C R be measurable, 1 < p < oo, ¢ is the Holder Conjugate.

If f e LP(A) and g € LY(A), then fg € L'(A) and

/wzmmm
A

[fgl = [f]- 19l

< |l 1l9]lco almost everywhere

Integrable by Comparison.

= fg € L'(A)

AUMSAUHMMZMMWM

2. 1 < p < o0, qis the Holder Conjugate.

fIP - gl@
ol = 1f] 1o < L 4 9
p q

is integrable by comparison.
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fg e L'(A)

Also,
1 1
Jusa<s [ures [ gl
A PJa q.Ja
1 1
=?U%+?ME
@) [Ifll, = llglly =1 L
<—+-=1=|[fl-llg
J 1ol < S =1 =1 Nl
_f
(b> 1l Nlgllq
By (a),
o,
e | gl <1
1 fllpllgllg Ja
= [ 1191 < £l gl
Lemma
p, q are Holder Conjugate, f € LP(A).
If f#0,

fr=1flp 7 sen( I

/ £ =11,
A

10y =1

is in L(A) and

Why?

l.p=1,g=0
fr=sgun(f) € L>(A)

[ 5= [1n=111

1/ oo =1

2. 1 < p < o0, qis the Holder Conjugate.

* 1-p P _ 1-p P
‘Aff (Al [}ﬂ 112
= [Ifll

TR r / FIY

—fl / I

= [IAIPIAR =1
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Theorem [Minkowski’s Inequality]
A C R measurable, 1 < p < .
If f,g € LP(A), then

1f+ gl < 1fllp + llglly

Proof:

1. p =1 Done.

2. 1 <p<oo.

Hf+g|!p=/A(f+g)(f+g)*

z/Af(f+g)*=/Ag(f+g)*

Nl 1CF+ )7l + gl - 11CF + )7l
—11£llp + llgll,

8.3 Completeness

Goal:
Prove that LP(A) is a Banach space for all 1 < p < 0.
Theorem [Riesz-Fisher]

For every measurable A C R and 1 < p < oo, LP(A) is a Banach space.
Proof:

1. p = oo, Piazza.

2. 1< p<
Let (f,) € LP(A) be strongly-Cauchy. Therefore, there exists (¢,) C R such that:

(a) ||fn+1 - fn“p < 6721

(b) > e, < o0

Idea: Since R is complete, if (f,(x)) is strongly-Cauchy, then it converges.
For each n € N,

Ay ={r € A:|foa(2) — fulz)] > €}
={zed:|fun(z) = (@) = €}

By Chebychev:

1 1
) < 5 [ 1fun = P < e =
A n

€n
= Zm(An) < Zeﬁ < (Zen>p < 00
m (limsup A,,) =0
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Fix = ¢ limsup 4,,.
Let N =max{n:z € A,}
Forn > N,

|for1(x) = fulz)| < ei,ZEn < 00

= (fu(z)) Cauchy
fa(z) = f(z) €R

fn — f pointwise almost everywhere.

For k € N,

an+k - anp S anJrk - fnJrklep + -+ an+1 - fn“p
< g1 T e

| fask — ful? = | fn — f|P pointwise almost everywhere as k — oo.

By Fatou,

I

Shnllnf/ |fn+k - fn|p
k—o0 A

< [ie?r—m

i=n

8.4 Separability

Goal: Prove that LP(A) is separable for all 1 < p < oc.
Recall:
A metric space X is separable if it has a countable, dense subset.
Exercise:
p=o00?
Suppose {f, : n € N} is dense in L]0, 1].
For every z € [0, 1], we may find

1
1X10,2] — fom)lloo < 5

For x # y in [0, 1]
IX[0,.2] = X[ogilloc =1
6 :[0,1] — N is injective.
Contradiction.
Notation:
Simp(A) = simple functions on measurable set A.
Step|a, b] = step functions on [a, b].
Stepg[a, b] = step functions on [a, b}, with rational partition and function values.
Stepg[a, b] countable.
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Proposition:

A C R measurable, 1 < p < .
Simp(A) is dense in LP(A).

Why?

f € LP(A) — f measurable

There exists (¢,,) simple functions:

1. ¢, — f pointwise.

2. Jon| < |f] = lenl? < |fIP

By Comparison, (p,) C LP(A)
Note:

low — fI =/A|son g

lon — f’p <2 <|‘:0n|p + |f‘p)
< 2PH| fIP

By the Lebesgue Dominated Convergence Theorem:

lim/!@n—ﬂp:/O:O

Fact: This is also true for p = oco.
Proposition:

1<p<oo

Step|a, b] is dense in LP[a, b]

Why?

A C [a, b] measurable, x4 : [a,b] — R.
Littlewood 1:

= |_| I; = U(I; being bounded, open interval)

=1

m(UAA) <

Xu : [a,b] — R (Step functions)

Ixo —x — Al
:/ Ixv — xal’
A
=m (AAU)
= |xv — xallp <e
Corollary:
1<p<oo.

Stepgla, b] is dense in LP[a, b].
Therefore, L”|[a, b] is separable.
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Proposition:
1<p<oo.

LP(R) is separable.
Why?

Fy={f € L’(R) : fl_nn € Stepg[—n,n], flr\[-nn = 0}

F =J.2, F, countable.
Take f € LP(R). Fix n € N.
= fli=nm € L* ([-n,n])

We show
fX[—n,n} — f
in LP(R)
Note:
1.
| fX1=nm) — FIIP
— [ 13 = £
R
=[
R\[—n,n]
:/ |f|pX]R\[—n,n]
R
2.
’|f|pXR\[—n,n]‘ < |f
integrable

3. By the LDCT,

T | F o — 1
= lim / ’fX[fn,n] - f‘p
n—oo R

:/O:O
R

For each n € N, there exists ¢,, € F' such that

Therefore, || fx(—nn — fllp = 0.

1
”fX[fn,n} - Soan < ﬁ

Therefore, ||¢, — f|l, = 0

Theorem

1 <p< oo, AC R measurable.

LP(A) is measurable.

Why?

F as before:

{fla: f € F} is a countable dense subset of LP(A).
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9 Week 9

9.1 Hilbert Spaces

F=RorC
Definition:
V is a vector space over F. An inner product on V is a map (-,-) : V x V — F such that

1. Forallv € V, (v,v) € R, (v,v) > 0 with (v,v) =0 iff v = 0.

2. For all v,w € V, (v,w) = (w,v)

3. Forall « € F, u,v,w e V:
(au + v, w) = a{u, w) + (v, w)

We call (V, (-,-)) an inner product space.
Proposition:
Let V be an inner product space.
lull = v/ (v, v)

is a norm on V. We call || - || the norm induced by (-, -)
Example:
A C R measurable. V = L?(A).

<ﬁ@=/ﬁg

is an inner product space.
Note:

VI = (/A|f|2)1/2 — Il

Exercise:
A C R measurable.

V =1L1*(A,C)

(f.g) = /A 17
VD = Il

[See A3]

Proposition: [Parallelogram Law]
Let V' be an inner product space. For all u,v € V,

lu+vl* + flu = ol* = 2 (Jlul® + [|v]*)

Why?
lu 4o + [l — v]f?
=(u+v,u+v)+ (u—v,u—0v)
=(u,u) + (u,v) + (v,u) + (v,v) + (v, u) — (u,v) — (v,u) + (v,v)
=2 ((u, u) + (v, v))
=2 ([lull* + [[v]?)
Example:
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Let 1 <p<oo, V=LP02. = X[0,1, 9 = X[1,2]

2/p
112 = ( /[ 2] mp)

=127 =1
lglly =127 =1
If +gllp =27
If = glly = 227

We get the parallelogram law:
& 227 4 2?7 4 2(1 4 1)

&SP =2ap=2

Therefore, || - ||, is induced by an inner product iff p = 2.
[Piazza] || - |« is NOT induced by an inner product.
Definition:

A Hilbert Space is a complete inner product space. (i.e., a Banach space whose norm is induced by
an inner product.)

Examples:
L*(A), L*(A,C) are Hilbert spaces.

9.2 Orthogonality

Definition:
Let V be an inner product space. We say v,w € V are orthogonal if (v, w) = 0.
Example

frge L?([-m,7),C), m #n,m,n € Z. f(x)=e", g(x)=em

ra)= [ 13
[_777”]
/ ein$€—im:cdl,
[77777‘-]
— / ei:v(nfm)dx
[—7T,7T]

3
|
3

n—m

Theorem [Pythagorean Theroem]
Let V be an inner product space.
If v,...,v, € V are pairwise orthogonal, then

2
[ ol = X e
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Definition:
Let V be an inner product space. We say A C V is orthonormal if the elements of A are pairwise
orthogonal and |jv]| =1 for all v € A.

Corollary:
Let V be an inner product space, {vy,...,v,} orthonormal.
2
[ o] =Y
where a; € R.
Exercise:
L2 ([_7‘-7 ﬂ-]: C)

A= \/LQTT@WE ‘n € Z} is pairwise orthogonal.

1

ina||2
o e
:i emxe—inzdl,
2 [—m,m)
_ 1
2w [—m,m]

=1 = A is orthonormal

Definition:

Let V' be an inner product space.

An orthonormal basis is a maximal (with respect to C) orthonormal subset of V.

Fact: An inner product space always has an orthonormal basis.

Fact: Let H be a Hilbert Space. If W C H is closed subspace, then there exists a subspace W+ C H
such that

H=WaoWH"

and (w,z) =0 for all w € W and z € W+,
Theorem
Let H be a Hilbert Space, then H has a countable orthonormal basis iff H is separable.
Proof:

e Forward Direction:
Let B be a countable orthonormal basis for H.
Claim:
W = Span(B), W = H.
Suppose W # H. Since H = WaW, we may find 0 # z € W We may assume ||z|| = 1.
Therefore, B U {z} is orthonormal.
Contradiction.
Therefore, W = H.
= Span—Q(B) = H is a countable set.

Therefore, H is separable.

e Backwards Direction:
Suppose H does not have an orthonormal basis, which is countable.

Let B be an orthonormal basis for H.
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Therefore, B is uncountable.
For u # v in B,
lu—v]|* = [lul® + [[o]* = 2

= Jlu—vl =v2

Suppose X C H such that X = H.
For every u € B, there exists x,, € X such that

V2

|u — ]| < 5

For u # v in B, we have that z, # z,.
Therefore, ¢ : B — X, p(u) = z, is an injection.

Exercise:

e in
V2
is a countable orthonormal set in L? ([—7, 7], C).

Countable, Orthonormal, Maximal 777

9.3 Big Theorems

Remark
Let H be an inner product space. Let {vy,va,...,v,} be orthonormal.
If v => \w;, then
Ai = (v, v;)
We call (v,v;) the Fourier coefficient of v with respect to {vy,vs,...,v,}

Definition:
Let H be Hilbert Spaces, {vq,vs, ...} be an orthonormal set. For v € H, we call:

o0

Z(v, Vi)

i=1

the Fourier series of v relative to {vy, v, ...} and write:

0o
v~ Z<U, Ui)”i
i=1

e Converges?
e Converges to v?

Theorem [Best Approximation]
Let H be Hilbert Space, {v1,...,v,} be a finite orthonormal set in H.
For v € H, ||[v — > \v;|| is minimized when

Ai = (v, v;)
Moreover,
lo =~ (v, vyl
=[Jol|* = [(v, v
Why?
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1. W = Span{vy,...,v,} closed.
V=WaeWw

2. xeW. v=w+z,weW,ze W

o = all* = flw+ 2 = o
— fju— a2+ 2|
= = ] + ||

> |12 = [lv — w|?
= Jlv = zf| = [lv - w]]

3. 0= \vi+2,2€ W
(v,v;) = N + (2, v5)
4. v=> (v, v;)v; + 2,2 € Wt

2
= ol = ||t b+ 1212
=3 l{o, )+ |2l

Therefore,

2

v — Z(v,vﬁ

=|12]I*

=[lol* = > [{v, v

Theroem [Bessel’s Inequality]
Let H be Hilbert Space, {v1,vs,...,v,} is orthonormal.
IfveH,

n
> oo < Jof)?
i=1

Why?

lol* =~ (v, o) P = |17]* > 0

Theorem [Parseval’s Identity]
Let H be a Hilbert Space, {v1, v2,v3,...} be a countable orthonormal set.
Forv e H,

o0

> v, o) = ol
=1
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ift

n

v — Z(v,v»vi

i=1

lim =0
n—oo

Theorem [Orthonormal Basis Test]
Let H be a separable Hilbert Space, {vy, vy, ...} be orthonormal.
The followings are equivalent:

1. {v1,vg,...} is basis.

2. Span{vy,ve,...} = H
3. limy, oo [ — D00 (v, v5)v5]| = 0 for every v € H.

Why?
(1) = (2): Done.

(2) = (1):

If {v1,vq,...} is not maximal, then we may find v € H, |Ju|| = 1 such that (u,v;) =0, ¥i € N.
Since C' = {x € H : (x,u) = 0} is closed, u ¢ Span {vy,vs,... }.

(2) = (3):

Let v € H and let € > 0 be given:

Let SN, ayu; € Span {vy, ... } such that:

<€

N
v — E ;U;
=1

Therefore, ||v — Zfil@wﬁvz’” <€

Forn > N,
v— Z(v, v;)V;
1
N n
S v — Z(U, Uz’>'Ui -+ Z<U7Ui>vi

1 N+1
(3) = (2):
Similar.

10 Week 10

10.1 Fourier Series

Motivating Questions:
1. Is {#ei”‘” in € Z} an orthonormal basis for L? ([—m, 7], C)?
2. Is Span {e™* : n € Z} dense in L? ([-7,n],C)?
3. Is Span {¢™* : n € Z} dense in L' ([—m,7],C)?
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Pictorially:
Given f € L' ([-m, )
Can we approximate f using sinusoidal functions?
Definition:
Let T = [—m,m). We call T the torus or the circle.
We define:
LX(T) := L* ([-m,m),C)

1/p
1= (55 [ 177)

for 1 <p < .
Using the norm,

LP(T') is a separable Banach space.
Remark

1. As a group under addition modulo 27,

T=R/Z={zcC:|z| =1}
2. In this way, T is a locally compact abelian group.

3. There is a one-to-one correspondence between f : T — C and 27-periodic functions f : R — C.

Definition:
Let f e LY(T).

1. We define the nth (n € Z) Fourier coefficient of f by:

] 1 —inT
(f, e = 2—/f(.:1:)e dx
T Jr
2. We define the Fourier series of f by:
f ~ Z aneinz
where a, = (f, ™).
3. We let
N
Sn(f,x) = Z:(ane"“D
Y
denote the Nth partial sum of the above Fourier series.

Proposition
Consider the trigonometric polynomial f € L'(T) given by:

for some q; € C.
For each —N <n < N,

Why?
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1

_ pimT oI o 5m,n
2m Jp

Remark
Suppose f € L'(T) is real-valued.

f ~ Z anein:c

nez
For N € N,
N
Sn(f,z) = Z ane™
n=—N
N
=ay+ Z (ane™ + a_,e”)
n=1
N
=aqap + Z ((an + a_y) cos(nz) +i(a, — a_,)sin(nz))
n=1
N
=ap + Z by, cos(nx) + ¢, sin(nx)
n=1
Now,

1 , 1
ag = %/Tf(x)emx dr = %/Tf(x) dx

b, = a, +a_,
1 . .
_ %/Tf(x) (e—znx+eznm) dlE
= %/Tf(x) cos(nz) dx

Cp =1 (an —a_y,)
L [ e - a
_ % /T f(z) sin(nz) d

are all real-valued.

10.2 Fourier Coefficients

Proposition
f.g € LNT).

L (f+g,em) = ([, ") + (g,e™")
2. For a € (C’ <Ckf, einx) _ &<f, einz>
3. If f: T — C is defined by f(x) = m, then f € LY(T) and (f,e™) = W
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Why?
3): £ =117l = f € LY(T)

Proposition
Let f € LYT), a € R.

By a previous remark, we may view f : R — C as a 27-periodic function which is integrable over T'.
For a € R, f, : R — C given by f,(z) = f(z — «) is integrable over T and (f,, e™®) = (f, ™"*)e ">

Proof:

Assignment.

Proposition

feLXNT), forall n € Z, |{f,e™)| < | fl.
Proof:

[(f,em)] =

1 —inT
ﬁ/Tf(x)e dx
1 )
< %/T|f(x)e”””| dx

-5 [ @) as

= [|fllh
Corollary f, — f in LY(T).
For all n € Z, ' '
<fk7 e’L?’LZB> _) <f7 e’L’rL(E>
Proof:
|<fk‘7 eina:> o <f’ eznac>‘
={fu — [, e"™)|
<|Ife = flh k—> 0
—00
Remark

Let Trig(T') denote the set of Trigonometric polynomials on 7.
By A3,

Trig(T) = L'(T)

Theorem [Riemann-Lebesgue Lemmal
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If f € LYT), then limp, o (f, ™) = 0.

Proof:

Let € > 0 be given and let P € Trig(T"), such that ||f — P||; <e.
Say P(z) = Y0y are’™™.

Forn > N or n < —N (|n| > N), we have that: (P, e™*) = 0.
For |n| > N,

|<f7€ina;>| — |<f_p’6zn:(;>|
<|lf =Pl <e

10.3 Vector-Valued Integration
See PDF

10.4 Summability Kernels

Goal
Given f € LY(T), determine when S, (f,z) — f(x)
Pointwise? In L'?
Main Tool:

1. Summability Kernels
2. Convolution
Definition:

f.9 € LY(T).
The convolution of f and g is the function f x g : T'— C given by

(F* o)) = 5= [ fOata—1)
=57 [ ata) @
Facts

1. Given f,g € LY(T), f* g€ LYT) as well.

2. 1f * gl < (£l - Mgl
3. This makes L'(T) a Banach algebra.

Let C(T) denote the set of continuous functions 7" — C.
Definition
A summability kernel is a sequence (k,) C C(7T') such that:

Lo [pka=1
2. AM,Vn, ||ka|1 < M.

3. For all 0 < § <

—0 T
lim (/ |/<;n|+/ \kn|> 0
n—o0 - s
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Proposition
Let (B, | - ||g) be a Banach space. Let ¢ : T'— B be continuous.
Let (k,) € C(T') be a summability kernel.

Then,
1
lim — [ Ek,(t)p(t) dt = (0
tim o= [ u(e)o(0) dt = (0
in the B-norm.
Proof
Appendix
Notice how (2) and (3) are used.
Remark
By A3, ¢ : T — LY(T) given by ¢(t) = f; = f(x —t) is continuous.
Theorem
f e LYT), (k,) is a summability kernel.
In LY(T),
F= lim k, * f
n—oo
Proof
lim / o (£)p(t) dt = o(0)
n1—>oo 21 T " ¥ - ¥
o:T—= L't f
1
lim —/k‘n(t)f(x —t)dt = f(z)
n—oo 27 Jop
= lim (k, * f)(x) = f(z)
n—oo
11 Week 11

11.1 Dirichlet Kernel

Recall
If (k,) is a summability kernel and f € L'(T), then lim, o k, * f = f in L}(T).
Want
Find (k,) such that:

Remark

feLXT).

For n € Z, consider @, (r) = e € LY(T).
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Then,

(o % 1) (@)
L f) e

1

1 )
n:p/ efzn(:vft)f(x . t) dt
T

e f(x —t) dt

=—c
2T

1 . )
A3 eznx/e—zn(—t)f(_t) dt
T

“om
i%einx /I‘j e*intf(t) dt
:einx<f’ einx)
Remark
feL D). If P(x)=>"__, axe™
then
(P f)(z)
1
=35 |, POf@—1)dt
~ an ikt
:kz_n%/:rek flz—1t)dt
=Y anlenr (@)
k=—n
= i aneikx<f7 eika:)
k=—n

Remark / Definition
Let D,(z) =Y _,_ , €** be the Dirichlet Kernel of order n.
Thus,

(D x f) (2)
_ Z eik:r<f’ eikm>

=S,(f, ) (n-th partial sum)

Bad news. ..
(D,,) is not a summability kernel. (See appendix). But we are close.

11.2 Fejer Kernel
Recall

1. lim, ook * f = f (in LY(T))
2. D, f=5,(f)

3. D, is not a summability kernel.
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The partial fix. ..
Idea (z,) C C.

Consider
. LL’1+I2+"‘+SC”
"o n
Exercise:
If x, — x, then y, — .
Definition:
D D .4 D,
o) — Do@)+ Difa) 4+ D)
n+1
Let F,(x) be the Fejer Kernel of order n.
Remark
F()(i[)) = Do(m) = 1
efi:r + 26'[03: + eiz
Fl(l’) = 9
efiQx ‘l’ 2671‘:): + 36iOw + 261'36 + 62’2:)3
Fy(z) = 3
- LRy
Fn — 1— ikx

0= (1-755)

Remark

(F},) is a summability kernel! (See appendix).
Remark / Definition

1 n
F, = D
=/ n+1kz; kx ]

= s

n+ 1=
_ S+ 51+ -+ Salf)
n+1
=: o,(f) (nth Cesaro mean)
Theorem
f e LYT), (F,) being the Fejer kernel.
lim F), % f
= Jm on(f)
=f in LY(T)
Remark:
If (S,(f)) converges in L', then
Sulf) = f

in LY(T).
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11.3 Fejer’s Theorem

Recall
lim,, 500 0, (f) = f in LY(T), where o,(f) = w
Idea

L' convergence is great theoretically, but pointwise convergence is practical.
Theroem [Fejer’s Theorem]|
For f € L'(T) and ¢ € T, consider wy(t) = 3 lim,_o+ (f(¢t +2) + f(t — x)) provided the limit exists.
Then
on(f,t) = we(t)

In particular, if f is continuous at ¢, then

on(f;t) = f(t)

Proof: Appendix
In practice:

1. FixxeT.
2. Prove (S,(f,z)) converges.

3. Then
Sn(f,x) = we(x)

4. If f is continuous at z, then S,(f,z) — f(x). i.e.,, S(f,z) = f(x).

Example:

feLNT), f(x) = |zl

Sn(f, x)

=ap + Z (by, cos(K ;) + ¢ sin(K))

[ T
ao—%/_ﬂ\x|d:c—§
bk:;/—w || cos(kx) dx:T

1 s
k= —/ |z| sin(kx) de =0
L -

Therefore,

)
n o k .
Z ((1;{;—21 cos(k:a:))
—2
m COS((ZI{I — 1)27)
k=1
Note: (S,(f,x)) converges by comparison test with » %—1)2

Since f is continuous,
B 4 i ((2k — 1D)x)
s (2k —1)2
k=1
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1. Taking z = 0:

12 Week 12

12.1 Homogeneous Banach Spaces

Goal
Generalize what we have done for L'(T') to LP(T) (p < 00).
In particular, we look at L*(T).
Definition:
A homogeneous Banach space is a Banach space (B, || - ||5) such that:

1. B is a subspace of L'(T).

2. - <1 lls
3. Forall fe B, foralla €T, fo € B, | follz = | fll5

4. For all f € B, forallty €T,
hm Hft — ftOHB = O
t—to

Exercise: (LP(T),] - |lp). p < oc.
Theorem:
Let B be a homogeneous Banach space, (k,) be the summability kernel.
For all f € B,
Tim [[k, * f — flls =0

Why?
1. ]
= kW fidt = ks f
27T T N——
N ~~ L1 —valued
B—valued
2. ]
lim — [ k,(t)p(t) dt =
tim o= [k (04(0) dt = ¢(0)

for all continuous ¢ : T — B.
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3. ¢ : T — B, ¢(t) = f; is continuous. (For all f € B)
4.

[k f — flls =0

Remarks
1. Let B be homogeneous Banach space.

Taking k, = F,,, we have:

for all f € B.
2. Taking B = LP(T):

1. Trig(T) = L*(T)

2. Span{e" |n € Z} = L*(T)

3. {e"* | n € Z} is an orthonormal basis.

4. Let the above orthonormal basis be written as {vy, vg, v3, ..

For all f € L*(T),

Jim Z(ﬁ vi)v; = f

_ 1 _ikx
5. va—\/—2—7re s

(f,v)v= (/Tf(x)\/%e_ikx dx) \/ﬂe.
1

1
\ 2T

- E (27T<f, 6“”))
— <Jc7 eikx>€ikx

6. For all f € L*(T),

150 (f) = flla =0
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